什么是分析,数据分析决胜未来原创
金蝶云社区-宋明军
宋明军
47人赞赏了该文章 2,411次浏览 未经作者许可,禁止转载编辑于2021年12月07日 08:29:59

image.png



01 

引言

------故明君贤将,所以动而胜人,成功处于众者,先知也。先知者,不可取于鬼神,不可象于事,不可验于度,必取于人,知敌之情也。  

                                                                                                                                           ——《孙子兵法•用间篇

通过上面孙子兵法》这段话,我们也可以知道古人也在很早就会使利用分析知己知彼,洞察秋毫,决胜千里。


02

  什么是分析

一般的定义是为:一种全面的、基于数据驱动的解决问题的策略和方法。分析通过试用逻辑、归纳推理、演绎推理、批判思维、定量阀(结合数据)等手段,来检验和分析现象,从而确定其本质特征。


分析的概念

我们从以下几个方面来探讨和分析相关的几个概念。


1.商业智能和报表

关于分析和商业智能的的区别,几乎没有形成过共识。有些人将分析归类为商业智能的一个子集,而另一些人则把它归为完全不同的类别。

大多数商业智能应用的局限性并不在于技术的限制,而在于分析的深度和为行动提供依据的真正洞察力。例如,告诉我们已经发生了什么事情并不能帮助我们决定如何行动以改变未来,这样的结果往往通过离线分析可以得到。分析的真正责任是形成可行动的,可操作的洞察力,从而能够帮助我们了解已经发生的事情(在什么地点发生,为什么会发生,在什么条件下发生)预测出未来可能发生什么,以及我们可以做什么来影响和优化未来的结果。

image.png

图1:商业智能(BI)仪表盘

而报表,是用来描述有关现象的信息展示技术,通常位于数据传递管道的尾部,在那里可以直观地访问数据和结果。而另一方面,分析则超越了对数据的描述,它真正理解了这个现象的内在规律,从而来预测、优化和预判未来应采取的适当行动。


2.大数据

大数据(Big Data)是一种描述不和谐信息的方法、在将数据转化为洞察能力的过程中,组织必须处理这些难以处理的信息。如果将大数据描述当今信息复杂的概念,那分析就可以帮助我们以主动的方式(预测性和规范性)来分析复杂性,而不是以被动的方式(BI,商业智能)来应对。


3.数据科学

数据科学是一门科学学科,它利用统计学和数学等领域的定量方法及现代技术,开发出用于发现模式、预测结果和为复杂问题找到最佳解决方案的算法。


数据科学和分析的区别在于,数据科学可以帮助甚至支持自动化实现对数据的分析,但是分析是一种以人为中心的策略,它充分利用各种工具,包括那些在数据科学中发现的工具,来理解事物现象之间的真正本质。


4.边缘分析

边缘分析一般指的是分布式分析,分析被内置到一些机器或系统中,通过这种内置的方式,信息的生成与收集已经成为企业“下意识”的自主活动。边缘分析通常与智能设备,物联网(IoT)联系在一起,把分析嵌入到收集设备上完成的,给物联网带来独特的价值机会。


5.信息学

信息学(informatics)是信息技术和信息管理的交叉学科。在实践中,信息学涉及用于数据存储和检索的处理技术。从本质上讲,信息学讨论信息是如何管理的,指的是支持流程化工作流的系统和数据生态系统,而不是对其中发现的数据进行分析。


在信息科学中经常谈到的健康信息学,它专门用于保健医疗研究,是介于健康信息技术和健康信息管理之间的一种专业技术,它将信息技术、通信和保健结合起来,以提高病人护理的质量和安全性。在下图中,我们可以看出,它位于人、信息和技术三者交汇的中心。


分析集成了所有这些概念,并依赖于底层数据、支持技术和信息管理过程来实现这一目标。

image.png

图2:健康信息管理、健康信息技术和信息学之间的区别

6.人工智能与认知计算

人工智能(AI)是一门“让计算机做需要人类智能才能做的事情的科学”。


人工智能和机器学习的区别在于,人工智能是指利用计算机完成模式的识别与探索这类“智能”工作的广义概念,而机器学习是人工智能的子集,它主要利用计算机从数据中学习的概念。


机器学习可以根据数据进行学习和预测,不是仅仅根据特定的一组规则或指令完成事先规划好的操作,而是利用算法训练来自主识别大量数据中的模式。


03  

分析方法论

上面我们讨论了分析及相关的一些概念,如何让这些概念真正应用到企业管理和经营当中,离不开分析发方法和实用方法,以及各种工具。

1.应用统计与数学

统计涉及数据的收集、组织、分析、解释和展示。分析和数据科学都使用统计学的数量分析基础,但它们的关注范围比传统统计更广泛,而关于统计学与其他学科之间的概念关系很多观点,这些概念之间的关系,如下图:

image.png

图3:统计与其他定量科学之间的关系

数学的思维是演绎性的,就是通过一般定律或原则来推断某一特定实例,而统计推理是归纳性的,就是从具体实例中提炼一般规律。这种差异在分析环境下是很重要的,因为我们将归纳推理和演绎推理应用与分析解决不同的问题。因此,将数学和统计都应用到分析领域是适当的和必要的。


2.预测和时间序列

在讨论分析方法时,预测和时间序列往往被一起提及,并不是因为它们都针对同一类问题,即基于历史信息对时间序列数据进行特征提炼和预测。

预测和时间序列分析是指对时间序列数据进行分析、从数据中提炼有意义特征的方法。很多时候,预测被描述为通过历史数据对趋势进行判断,并通过可视化手段进行直观展现的方法,有些还提供了关于未来的预测。而实际序列分析不同于预测。

时间序列分析采用了多种方法,既有定量的,也有定性的。时间序列分析的目的是在历史数据或时间序列数据中找出一种模式,然后推测未来趋势。通常有以下四大类时间序列分析方法,如下图:

image.png

图4:预测和时间序列分析的方法

3.自然语言处理

自然语言处理(Natural Language Process, NLP) 是通过计算机来理解和生成“自然语言”的方法。NLP专注人类语言和计算机之间相互交互的研究领域,NLP的目标是理解计算机文本中的自然语言,用于文本分类、提取和总结。例如:在分析过程中,我们获取过去的描述信息(如,文本、文档、推文、演讲),并对它们进行语义分类或情绪理解,处理过的文本将作为分析过程的输入,用于预测建模、决策分析、搜索或回答问题的机器人。

下图描述了一个完整的自然语言处理的普遍过程。

image.png

图5:自然语言处理过程示意图

4.文本挖掘与文本分析

文本挖掘处理文本数据本身,文本分析涵盖范围比较广泛,通常包括应用统计分析、机器学习和其他一些高级分析技术,但通常被认为等同于文本挖掘。


5.机器学习

机器学习的核心是使用算法来建立量化分析模型,帮助计算机模型从数据中“学习”。它同以人为中心的处理过程不同,它是由计算机学习和发现隐藏在数据中的模式,而不是由人去直接建立模型。一般而言,机器学习中模型建立和模型管理的概念是指能够持续并重复开展后续的决策流程,而不是高度人工参与的常常基于统计手段的分析。

随着近年来计算能力的进步,机器学习可以用来自动地实现针对大数据的复杂数学计算,而这在以前是不可能实现的。

机器学习常见的方法如下图:

image.png

图6:机器学习常用的技术归纳

6.数据挖掘

数据挖掘是指在大型数据集中发现和解释规律模式,以解决业务问题的过程。数据挖掘作为一种分析大型数据库以生成新的或与众不同的信息方法而被广泛使用。

数据挖掘采用传统的统计方法,以及人工智能和机器学习技术,目的是在我们拥有的数据中识别出以前未知的模式并进行预测。


04  

 分析的目的


分析是一种支持变革的全面战略,它为干预措施或战略转型提供信息。分析的目的是支持数据驱动的、基于事实的探索过程。这一切是为了建立信心,推动我们了解知识,并利用这些知识来理解、解释、预测和优化。

总的来说,分析的主要目的主要有以下四点:

1.分析是关于改善结果的活动

我们通过分析来理解、描述和解决问题,并通过分析做出决策和创造洞察力,以推动变革。我们用我们所知道的来理解我们的世界:描述、发现、预测并给出建议。

2.分析是关于创造价值的活动

结果是分析的一个关键组成部分,我们通过分析要创造一些有价值的东西,否则分析将无任何意义。

3.分析是关于发现的活动

如何我们常用的商业智能是关于认知可知的事物,那么分析可以帮助我们探索未知的事物。分析的力量在与它支持我们对未知探索,我们利用推理和理解能力来挖掘数据中隐藏的模式。

4.分析是关于促成变革的活动

最后,关于变革,很少人喜欢或者主动拥抱变革,但变革是不可避免,完全不变的组织几乎不存在。推动组织变革的动力可以有多种形式,对于组织来说,可能是以危机的形式出现,比如灾难、利润下降、政府强制要求、系统性失败或者公共卫生危机等。


05

总结


在很大程度上,分析是一项有弹性的工作,因为它能够影响我们的工作方式,我们所做的决策以及我们取得的成果。分析常常与大数据、数据科学、信息学、甚至商业智能(BI)等放在一起讨论。

分析是一种组织战略,也是一个过程。对于企业来说分析不是终点,而是获得洞察力以实现变革的过程,分析是将数据转化为切实可行的措施的艺术和科学。

发布于 数据智能 社群

图标赞 47
47人点赞
还没有人点赞,快来当第一个点赞的人吧!
图标打赏
0人打赏
还没有人打赏,快来当第一个打赏的人吧!